オオザカ レンヂ 掲示板
[トップに戻る] [留意事項] [ワード検索] [過去ログ] [管理用]
おなまえ
Eメール
タイトル
コメント
参照先
投稿キー (投稿時 投稿キー を入力してください)
パスワード (記事メンテ用)

[376775] монтаж каминов 投稿者:Fredson33Nen 投稿日:2025/07/10(Thu) 03:31  

Мы предлагаем профессиональное услуги монтаж каминов

<b>Перейти</b> - https://gdekupitdom.ru/montazh-kaminov/

https://gdekupitdom.ru/montazh-kaminov/


[376774] МостБет Промокод на 投稿者:CharlesAcism 投稿日:2025/07/10(Thu) 03:18  



Узнай все про промокод Mostbet на сегодня. Используй при регистрации действующий промокод Мостбет и получай бонус за первый депозит до 35000р. Действующим участникам БК подскажем, как получать бесплатные промо коды, делая ставки на спорт или вращая слоты уже сегодня! Но обо всем по порядку. Регистрация в 2025 году <a href=https://afrodita.guru/art/promokod_mostbet__besplatno.html >использовать промокод</a>. Часто задаваемые вопросы по регистрации и учетной записи у букмекера Mostbet. Активация промокода Mostbet на сегодня. Разнообразие бонусных предложений от Mostbet другие типы бонусов и промокодов для игроков. Промокод Mostbet на День Рождения. Фрибеты или бесплатные ставки. Тото-промокоды Mostbet. Промокоды Mostbet у блогеров. Система промокодов при регистрации позволяет новым игрокам букмекерской конторы Mostbet получать внушительные бонусные суммы к своему первому депозиту. Обратите внимание, что это не промокод на ставку, а именно на регистрацию. Рабочие промокоды Мостбет на сегодня: Вид бонуса. Размер бонуса.


[376773] tgram 投稿者:tgram_mfMl 投稿日:2025/07/10(Thu) 03:15  

Накрутка подписчиков в ТГ, боты и живые подписчики в Телеграм, бесплатно <a href=https://vc.ru/nakrutka/1473665-nakrutka-podpischikov-v-telegram-top-25-servisov-besplatno-i-platno-2025>Накрутка подписчиков в ТГ, боты и живые подписчики в Телеграм, бесплатно</a>


[376772] кашпо напольное 投稿者:kashpo napolnoe_wqEr 投稿日:2025/07/10(Thu) 02:41  

кашпо пластиковое напольное kashpo-napolnoe-rnd.ru - кашпо пластиковое напольное .


[376771] “AI expends a lot o 投稿者:Vincentuters 投稿日:2025/07/10(Thu) 02:34  

“AI expends a lot of energy being polite, especially if the user is polite, saying ‘please’ and ‘thank you,’”
<a href=https://tripscan.biz>tripskan</a>
Dauner explained. “But this just makes their responses even longer, expending more energy to generate each word.”

For this reason, Dauner suggests users be more straightforward when communicating with AI models. Specify the length of the answer you want and limit it to one or two sentences, or say you don’t need an explanation at all.

Most important, Dauner’s study highlights that not all AI models are created equally, said Sasha Luccioni, the climate lead at AI company Hugging Face, in an email. Users looking to reduce their carbon footprint can be more intentional about which model they chose for which task.

“Task-specific models are often much smaller and more efficient, and just as good at any context-specific task,” Luccioni explained.
https://tripscan.biz
трипскан сайт
If you are a software engineer who solves complex coding problems every day, an AI model suited for coding may be necessary. But for the average high school student who wants help with homework, relying on powerful AI tools is like using a nuclear-powered digital calculator.

Even within the same AI company, different model offerings can vary in their reasoning power, so research what capabilities best suit your needs, Dauner said.

When possible, Luccioni recommends going back to basic sources online encyclopedias and phone calculators to accomplish simple tasks.

Why it’s hard to measure AI’s environmental impact
Putting a number on the environmental impact of AI has proved challenging.

The study noted that energy consumption can vary based on the user’s proximity to local energy grids and the hardware used to run AI models.
That’s partly why the researchers chose to represent carbon emissions within a range, Dauner said.

Furthermore, many AI companies don’t share information about their energy consumption or details like server size or optimization techniques that could help researchers estimate energy consumption, said Shaolei Ren, an associate professor of electrical and computer engineering at the University of California, Riverside who studies AI’s water consumption.

“You can’t really say AI consumes this much energy or water on average that’s just not meaningful. We need to look at each individual model and then (examine what it uses) for each task,” Ren said.

One way AI companies could be more transparent is by disclosing the amount of carbon emissions associated with each prompt, Dauner suggested.

https://tripscan.biz


[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100]
処理 記事No 暗証キー
- LightBoard -